The STARK curve

The STARK curve is an elliptic curve defined as follows:

\[y^2 \equiv x^3 + \alpha \cdot x + \beta \pmod{p}\]

where:

\[\begin{align*} \alpha &= 1 \\ \beta &= 3141592653589793238462643383279502884197169399375105820974944592307816406665 \\ p &= 3618502788666131213697322783095070105623107215331596699973092056135872020481\\ &= 2^{251} + 17 \cdot 2^{192} + 1 \end{align*}\]

The Generator point used in the ECDSA scheme is:

\[\begin{split}G = (874739451078007766457464989774322083649278607533249481151382481072868806602, \\ 152666792071518830868575557812948353041420400780739481342941381225525861407)\end{split}\]

The STARK curve is commonly used in smart contracts but not distinguished by the Starknet protocol.